
Continuous Ion Exchange Enabling Chemical Free High Recovery RO for Non-Potable Reuse

Willem Vriesendorp Chief Executive Officer

Business Units

Three Technology Platforms

3 core technologies * Multiple unique solutions * >10 patents * Innovation Awards

Water Technology solutions

Unique Resin technology for Selective pollutant removal

Encapsulated Bacteria for intensified nutrient reduction

Graphene membranes

Graphene membranes for minimal energy use and minimal secondary waste

Unique Technology Solutions

Encapsulated Bacteria Lenses

Intensification of nitrification and denitrification to achieve lower footprint and operate under harsh conditions of high salinity and toxicity

Chemical Free Ultra High Recovery RO

CIF removes hardness to maximize recovery and membrane life, while produced brine is used to regenerate the resins without need for additional chemicals

Phosphorous removal and recovery

4

Selective removal of phosphate from water creating a solid phosphorus product that can be recycled using low-cost chemicals making recycling attractive even at lower Phosphate concentrations

Clean TeQ Water (ASX:CNQ)

Continuous Ionic Filtration

Moving resin beds in counterflow to water to improve treatment efficiency, reduce chemical use, produce smaller volume brines and filter solids

Membrane Free Desalination

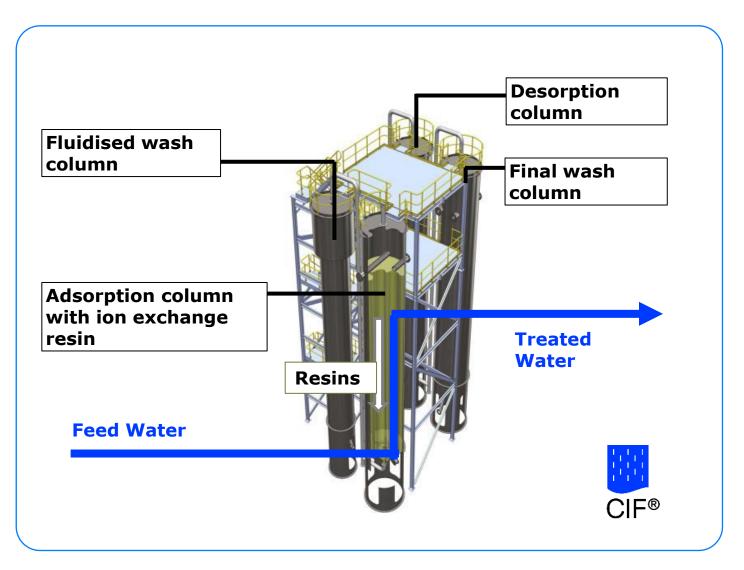
CIF®

Chemical removal of divalent ions resulting in ultra-high recovery of complex waste water at low cost without producing saline brines

Complete Nutrient Removal

Resins to remove TN from main effluent irrespective of temperature and composition with BIOCLENS used to remove TN from concentrated brine

Low Energy Evaporation/ **Crystallization**


.

Low temperature normal pressure evaporation to minimize energy use, reduce scaling and fouling risks and enable the reuse of waste heat

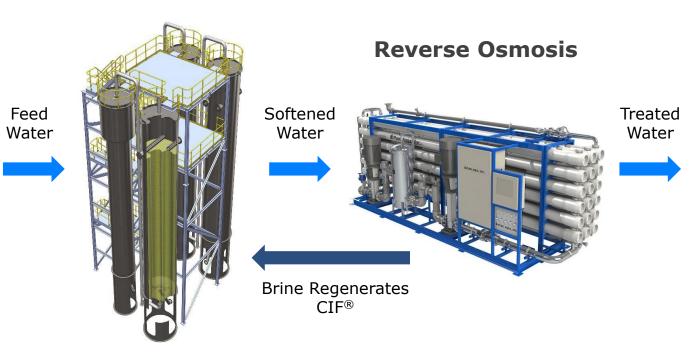
CIF®: Continuous Ionic Filtration

Features

- Moving packed bed of resins
- Selective removal of desired pollutants using ion exchange
- Tolerates up to 150 mg/L of suspended solids and performs physical filtration like a sand filter
- High fouling resistance since resin is periodically moved
- Alternative fluidized bed and Resin-in-Pulp designs to allow for sludges

Resin Technology Background

Continuous ion exchange
has been specifically
adapted by Clean TeQ
Water for water treatment
applications


Clean TeQ holds over 10 patents and extensive knowhow Continuous ion exchange originates from the former Soviet Union where around 40 plants are still in operation*

CLEANTER

HIROX[®] – Ultra High Recovery RO

CIF®

Features

- CIF[®] removes scale forming di/trivalent cations to low levels before water proceeds to RO
- RO brine used to regenerate ion exchange resin in a chemical free process
 - Used for the desalination of brackish & saline feeds
 - Very high water recovery (typically 92-98%)
 - Longer time between CIP and longer membrane life
 - Can retrofit CIF[®] to existing RO

Municipal Effluent Recycling: MBR Effluent

- Combination of HIROX and BIOCLENS, 98% recovery
- Minimize brine stream, maximize water recovery
- Phosphate and nitrate removed from saline brine stream to minimize CAPEX and meet disposal criteria

MBR Effluent

- CIF[®] removed calcium to below 1 mg/L before RO
- The RO brine concentrated to approximately 20 g/L TDS (mainly NaCl)
- Concentrated brine contained enough sodium to regenerate the resin without additional chemicals, at a significantly lower concentration than is typically used in batch processes
- RO would not suffer from scaling even without antiscalants

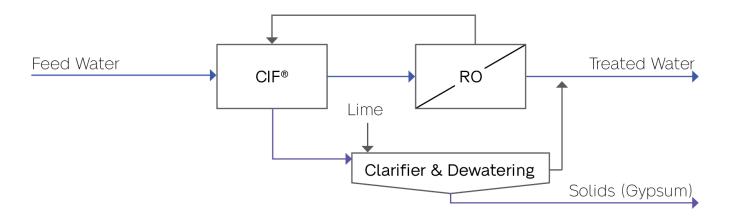
Less brine

High recovery

Longer membrane life-time

		Average Feed to CIF®				Average CIF [®] Softened Feed			
Water Type	Resin Ratio	Са	Mg	Na	Total Hardness	Са	Mg	Total Hardness	RO Recovery
	BV/BV	mg/L	mg/L	mg/L	mg/L CaCO3	mg/L	mg/L	mg/L CaCO3	
MBR Effluent	100	39	62	519	350	<1	1	<10	92%

Current HIROX[®] Project – O&G Well Water


- Clean TeQ Water is currently installing a HIROX[®] plant that will produce 1.2MLD in the Middle East
- The plant is designed to reduce the sulphate content of aquifer water to reduce scaling when used for reinjection
- It will substitute potable water with non-potable water to preserve precious drinking water reserves

Current HIROX[®] Project – O&G Well Water

- RO recovery of 80% when using HIROX[®], compared to 30% when using RO alone
- The sodium in the RO brine fully regenerates CIF[®]
- A clarifier has been added to recover sodium chloride from the spent brine
- Recovered sodium chloride blended with product water to reach density for well completions, greatly reducing the OPEX
- 90% Overall system recovery

Parameter	Unit	Feed Water	CIF [®] Softened Water	HIROX [®] Product Water	After Blending
Са	mg/L	1,000	50	1	<400
Mg	mg/L	510	485	1	<10
Na	mg/L	5,500	6,500	40	-
Cl	mg/L	9,500	9,500	64	-
SO4	mg/L	2,900	2,900	2	<440
TDS	mg/L	19,400	19,500	108	10,000 - 15,000

- CIF[®] softening is sufficient to achieve RO recoveries 95% or higher without suffering from scaling
- The RO brine can be used to regenerate the ion exchange resin without additional chemicals, even at low brine TDS
- Can recover sodium chloride as part of flowsheets reaching ZLD with minimum chemical cost
- Much less chemical use, longer membrane lifetime, less other pre-treatment needs, and lower brine volumes
- Significant application for water treatment in the non-potable reuse space, providing maximum water recovery for hard water

Willem Vriesendorp

Chief Executive Officer

- wvriesendorp@cleanteqwater.com

Clean TeQ Water Limited

12/21 Howleys RoadNotting Hill VIC 3168, Australiawww.cleanteqwater.com

